

Micro Trace Minerals GmbH

Über 30Jahre umweltmedizinische und toxikologische Untersuchungen

Röhrenstraße 20 D-91217 Hersbruck

Tel +49.[0]9151.4332 Fax +49.[0]9151.2306

info@microtrace.de www.microtrace.de

Kurznachrichten Sept 2012

- Seminarkalender 2012/2013: www.microtrace.de/de/workshops/
- 4.11.2012 Medizinische Woche Baden-Baden. Workshop der Deutschen Gesellschaft für Metalltoxikologie. Information <u>www.chelat-gesellschaft.de</u>
- 16.-18.11.2012 Munsbach, Luxembourg: deutschsprachiger Kongress, Thema: Umweltmedizinische Aspekte bei der Entwicklung von Autismus. Anfragen an Dr. Robert Thill: dr roby thill@email.lu
- **NEU:** Unsere Rechnungsstellung ist kassenfreundlicher gestaltet und den Anforderungen angepasst worden, d.h. die bislang beanstandeten Abrechnungsdetails etc wurden berichtigt.

Metalle im Speichel

Die Metallkonzentration im Speichel reflektiert den Metallabrieb der Zahnmetalle. Metalle aus Zahnwerkstoffen lösen sich im Speichel und gelangen über diesen in den Körper. Beim Kauen können aus Amalgamfüllungen Metalle wie Quecksilber oder Zinn freigesetzt werden, die bereits in geringer Dosis schädigend auf das Zentralnervensystem wirken. Amalgam enthält zu über 50 % Quecksilber, zu mindestens 20 % Silber und in weiteren Anteilen etwa 10 % Zinn und Kupfer. Erfolgt der vermehrte Abrieb über Wochen, Monate und Jahre, so kann mit Ablagerungen in Organgeweben gerechnet werden. Ein Provokationstest gäbe Aufschluss. *Musterbefund siehe Anhang*

- Prof. Dr. med. Gerhard et al, Universität Heidelberg kam zu den Ergebnissen, dass zwischen oralen Symptomen (Metallgeschmack, Mundtrockenheit, Zahnfleischbluten, Zahnfleischentzündungen, Herpes) und Metallkonzentrationen (Quecksilber, Gold, Molybdän)
 Zusammenhänge bestehen können. www.microtrace.de/de/labordiagnostik/speichel-amalgam/
- M.Alzheimer, Amyloid Proteine und die Metallionen Zink und Kupfer
 Untersuchungen der Leibniz Universität fanden einen Zusammenhang der Bindung
 unterschiedlicher Metall-Ionen zu Proteinen (APP). "Wir erhielten überraschend Kristalle mit
 gebundenen Kupfer- oder Zink-Ionen; ein Indiz für eine bis dato nicht bekannte MetallBindestelle in dem untersuchten Bereich", berichtet Dr. Manuel Than, Arbeitsgruppenleiter am
 FLI. Im Vergleich zur Metall-Ionen-freien Form wiesen die durch Röntgenkristallographie
 ermittelten APP-Strukturen eine signifikant andere räumliche Struktur auf und waren weniger
 flexibel als das ungebunden Protein. Interessanterweise haben verschiedene Studien
 nachgewiesen, dass die Konzentration von Cu2+ und Zn2+ im Gehirn von Alzheimer-Patienten
 fehlreguliert ist. http://www.microtrace.de/de/metalle-krankheiten-forschung/alzheimer/

<u>Kommentar:</u> diese Arbeit verdeutlicht, wie wichtig der vorsichtige Umgang mit Metall-Ionen ist. Welche Vorsichtsnahmen und Kontrollen angebracht sind, ist Thema unserer nächsten Workshops.

Micro Trace Minerals Labor

umweltmedizinische Untersuchungen

Röhrenstrasse 20, 91217 Hersbruck, Germany P.O.Box 4613; Boulder, CO 80306-4613, USA Telefon: +49 (0) 9151/4332 Telefax: +49 (0) 9151/2306 http://www.microtrace.de service@microtrace.de

MINERALSTOFF ANALYSE					Speichel						
					Labornummer			2SA120000			
Praxis/Kunde Beispiel Arzt								Testdatum		16.08.2010	
Patientenname		Beispiel Patient		Geschlecht		f		Geb.Dt		19.06.1997	
Klinische Information	n							Seite		1/1	
	Ref	erenzbereich	Meßwert								
Essentielle Spurenelemente in mcg/l											
Chrom		< 3,00	< 1,40					A			
Kobalt		< 2,50	0,29				A				
Molybdaen		< 3,50	0,56					A			
Essentielle Elemente (mg/L)											
Kupfer		< 0,07	0,07						<u> </u>		
Potentiell toxische Elemente in mcg/l											
Cadmium		< 2,00	< 0,76				A				
Gallium		< 1,00	0,28					A			
Iridium		< 1,00	< 0,23								
Nickel		< 2,00	7,55	1					A		
Palladium		< 1,00	< 0,62					A			
Platin		< 1,00	< 0,09				A				
Quecksilber		< 3,00	< 7,41					A			
Rhodium		< 1,00	n.n.								
Silber		< 2,00	3,09	1					A		
Zinn		< 2,00	2,11	1					A		