Water Analysis

Accreditation: DIN EN ISO/IEC 17025

Water is tested for total recoverable metals in accordance with EPA Methods and the European Drinking Water Regulation. Water test values are compared to the Maximum Contaminant Levels (MCL) as defined by EPA and the European Water Regulation Offices. Since regulations are less stringent in the USA compared to Europe, we compare test values to European norms, but list EPA norms as well.

Routine Basic Water Profile (Hardness Included) (P8)
Needed Material: 5-7ml water

Aluminium, Antimony, Arsenic-total, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Nickel, Selenium, Silver, Strontium, Thallium, Uranium, Zinc

Short Water Profile (Hardness Included) (P80)
Needed Material: 5-7ml water

Cadmium, Calcium, Copper, Lead, Magnesium, Nickel, Uranium, Zinc

Uranium Water Profile (Uranium)
Needed Material: 5-7ml water

Lithium in water associated with Autism

New research studies have found that consuming lithium-contaminated tap water during pregnancy could be associated with an increased risk of newborn autism development. As lithium levels increased, so did the risk of an autism diagnosis.  

Water analysis as offered by Micro Trace Minerals seems warranted during and after pregnancy. We routinely test lithium in water.


Some countries have high lithium reserves . To find out more about your country's lithium production, check this site.



Download Water Submission Form, fill out and send with water sample. Regular mail or air mail is acceptable. Metals are not affected by shipping time.

Uranium in drinking water. How does it get there?

Uranium occurs naturally in soil and rocks. It can enter groundwater and contaminate drinking water, which, over time, can harm health. In certain regions such as Nebraska, uranium is more present in rocks, soil and water than in other areas. Uranium cannot be detected by taste, sight or smell.

In drinking water, the chemical properties of uranium are of greater concern than its radioactivity. Studies show that elevated levels of uranium in drinking water can affect the kidneys. In Nova Scotia, uranium levels in drinking water are between 0.005 and 0.83 milligrams per litre (mg/L). The Canadian guideline for uranium in drinking water is 0.02 mg/L.

Uranium concentrations of up to 700 µg/litre (=0.7mg/l) have been found in private supplies in Canada (Moss et al., 1983; Moss, 1985). A study in Finland examined a population receiving drinking-water containing uranium with a median concentration of 28 µg/litre (Kurttio et al., 2002). In a study of 476 Norwegian groundwater samples, 18% had uranium concentrations in excess of 20 µg/litre (=0.02mg/l)(Frengstad et al., 2000). Concentrations in excess of 20 µg/litre have been reported in groundwater from parts of New Mexico, USA (Hakonson-Hayes et al., 2002), and central Australia (Hostetler et al., 1998; Fitzgerald et al., 1999). 


Uranium in Mineral Water

There is no statutory binding maximum level for uranium in mineral water. When manufacturers claim that these waters are suitable for the preparation of infant formula, the mineral water in question may not contain more than 2 microgram uranium per litre.
The German environmental agency guideline for tap and mineral water  is10 microgramm per litre.

The World Health Organisation (WHO) gives a guideline value of 15 microgram per litre.